A user-friendly tool to transform large scale administrative data into wide table format using a mapreduce program with a pig latin based script

نویسندگان

  • Hiromasa Horiguchi
  • Hideo Yasunaga
  • Hideki Hashimoto
  • Kazuhiko Ohe
چکیده

BACKGROUND Secondary use of large scale administrative data is increasingly popular in health services and clinical research, where a user-friendly tool for data management is in great demand. MapReduce technology such as Hadoop is a promising tool for this purpose, though its use has been limited by the lack of user-friendly functions for transforming large scale data into wide table format, where each subject is represented by one row, for use in health services and clinical research. Since the original specification of Pig provides very few functions for column field management, we have developed a novel system called GroupFilterFormat to handle the definition of field and data content based on a Pig Latin script. We have also developed, as an open-source project, several user-defined functions to transform the table format using GroupFilterFormat and to deal with processing that considers date conditions. RESULTS Having prepared dummy discharge summary data for 2.3 million inpatients and medical activity log data for 950 million events, we used the Elastic Compute Cloud environment provided by Amazon Inc. to execute processing speed and scaling benchmarks. In the speed benchmark test, the response time was significantly reduced and a linear relationship was observed between the quantity of data and processing time in both a small and a very large dataset. The scaling benchmark test showed clear scalability. In our system, doubling the number of nodes resulted in a 47% decrease in processing time. CONCLUSIONS Our newly developed system is widely accessible as an open resource. This system is very simple and easy to use for researchers who are accustomed to using declarative command syntax for commercial statistical software and Structured Query Language. Although our system needs further sophistication to allow more flexibility in scripts and to improve efficiency in data processing, it shows promise in facilitating the application of MapReduce technology to efficient data processing with large scale administrative data in health services and clinical research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scripting for large-scale sequencing based on Hadoop

Motivation and Objectives The large volumes of data generated by modern sequencing experiments present significant challenges in their manipulation and analysis. Traditional approaches, such as scripting and relational database queries, are often found to be inadequate, frustratingly slow, or complicated to scale. These problems have already been faced by the “big data revolution” in data-based...

متن کامل

CloudDOE: A User-Friendly Tool for Deploying Hadoop Clouds and Analyzing High-Throughput Sequencing Data with MapReduce

BACKGROUND Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/...

متن کامل

InRaDoS: An internal radiation dosimetry computer program

Introduction: Internal radiation dosimetry is important from a radiation protection point of view and can help to optimize the radiation dose delivered to the workers, public, and patients. It has a rather simple protocol but needs a large amount of data. Therefore, it is difficult to do on a routine basis. The use of computer programs makes internal radiation dosimetry simpler...

متن کامل

A free user friendly program for evaluation of radiotherapy plans based on different dose response models

Introduction: Radiotherapy (RT) plan evaluation using dose response models has become a feasible approach in routine clinical practice. Although there are several tools for this task, they suffer from limitations including number of different dose response models and parameters. In the present study, we aimed to develop a free program for RT plan evaluation based on a variety ...

متن کامل

PonIC: Using Stratosphere to Speed Up Pig Analytics

Pig, a high-level dataflow system built on top of Hadoop MapReduce, has greatly facilitated the implementation of data-intensive applications. Pig successfully manages to conceal Hadoop’s one input and two-stage inflexible pipeline limitations, by translating scripts into MapReduce jobs. However, these limitations are still present in the backend, often resulting in inefficient execution. Strat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012